Eliminating Pressure for Incompressible MHD
In the formulation of Elsasser’s variables $\mathbf{U} = \mathbf{v}+\mathbf{b}$ and $\mathbf{W} = \mathbf{v}-\mathbf{b}$,
\begin{eqnarray}
&&\partial_t \mathbf{U} = -(\mathbf{W}\cdot\nabla)\mathbf{U}-\nabla p,\
&&\partial_t \mathbf{W} = -(\mathbf{U}\cdot\nabla)\mathbf{W}-\nabla p,\
&&\nabla\cdot\mathbf{U} = \nabla\cdot\mathbf{W} = 0.
\end{eqnarray}
For undisturbed fluid $\mathbf{U} = V_A$ and $\mathbf{W} =- V_A$. Introducing small purturbation $\mathbf{U} = V_A+\mathbf{u}$ and $\mathbf{W} = -V_A+\mathbf{w}$
\begin{eqnarray}
&&\partial_t\mathbf{u}-V_A\partial_z\mathbf{u} = -(\mathbf{w}\cdot\nabla)\mathbf{u}-\nabla p,\
&&\partial_t\mathbf{w}+V_A\partial_z\mathbf{w} = -(\mathbf{u}\cdot\nabla)\mathbf{w}-\nabla p.\
\end{eqnarray}
Taking the divergence of above equations \begin{eqnarray} \nabla p = \nabla\cdot[(\mathbf{w}\cdot\nabla)\mathbf{u}]. \end{eqnarray}
In the Fourier space \begin{eqnarray} k^2 \tilde{p} = (\mathbf{k}\cdot\tilde{\mathbf{u}}(\mathbf{k}_1))(\mathbf{k}_1\cdot\tilde{\mathbf{w}}(\mathbf{k}_2))\delta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}). \end{eqnarray}
Therefore the Fourier transformation of $\nabla p $ gives \begin{eqnarray} \mathbf{k}p = (\hat{\mathbf{k}}\cdot\tilde{\mathbf{u}}(\mathbf{k}_1))(\mathbf{k}\cdot\tilde{\mathbf{w}}(\mathbf{k}_2))\delta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}), \end{eqnarray} where the incompressible condition $\mathbf{k}_2\cdot\tilde{\mathbf{w}}(\mathbf{k}_2)=0$ is used.
Taking the Fourier transform of the perturbed equations and defining $\omega_k = V_A k_z$
\begin{eqnarray} (\partial_t-i\omega_k)\tilde{\mathbf{u}}(\mathbf{k}) = -\frac{i}{8\pi}\int d^3 k_1 d^3 k_2; (\tilde{\mathbf{u}}(\mathbf{k}_1)-\hat{\mathbf{k}}(\hat{\mathbf{k}}\cdot\tilde{\mathbf{u}}(\mathbf{k}_1))(\mathbf{k}\cdot\tilde{\mathbf{w}}(\mathbf{k}_2))\delta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}) \end{eqnarray}
\begin{eqnarray} (\partial_t-i\omega_k)\tilde{\mathbf{w}}(\mathbf{k}) = -\frac{i}{8\pi}\int d^3 k_1 d^3 k_2; (\tilde{\mathbf{w}}(\mathbf{k}_1)-\hat{\mathbf{k}}(\hat{\mathbf{k}}\cdot\tilde{\mathbf{w}}(\mathbf{k}_1))(\mathbf{k}\cdot\tilde{\mathbf{u}}(\mathbf{k}_2))\delta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}) \end{eqnarray}